
 1

Abstract—In this article we argue that social visualization can

motivate contributors to social production projects, such as

Wikipedia and open source development. As evidence, we present

CodeSaw, a social visualization of open source software

development that we studied with real open source communities.

CodeSaw mines open source archives to visualize group

dynamics that currently lie buried in textual databases.

Furthermore, CodeSaw becomes an active social space itself by

supporting comments directly inside the visualization. To

demonstrate CodeSaw, we apply it to a popular open source

project, showing how the visualization reveals group dynamics

and individual roles. The article concludes by presenting

evidence that CodeSaw, and social visualization more generally,

can motivate contributors to social production projects if the

visualization leaves the laboratory and makes it to the

community visualized.

Index Terms— Open source, Remote Collaboration, Social

Visualization, Visualization.

I. INTRODUCTION

“It s an emergent property of connected human minds that they

create things for one another s pleasure and to conquer their

uneasy sense of being too alone.”

— Eben Moglen, Professor, Columbia Law School [1]

Yochai Benkler defines social production as “a new

modality of organizing production: radically decentralized,

collaborative, and nonproprietary; based on sharing resources

and outputs among widely distributed, loosely connected

individuals who cooperate with each other without relying on

either market signals or managerial commands” ([2], p.60). In

other words, social production is the amazing work we see in

open source communities, Wikipedia and elsewhere [3]. Just

looking at open source development, we can confidently say

that social production has succeeded: nearly 1.1 million North

American software developers participate in open source

development [4]. Major companies and governments have

adopted open source software for critical infrastructure [5].

Manuscript received June 1, 2008. This work was supported in part by the

National Science Foundation NSF 0643502.

E. Gilbert is at the University if Illinois, Urbana, IL 61801 USA phone:
217-333-3328; fax: 217-244-6869; e-mail: egilber2@ cs.uiuc.edu.

K. Karahalios is at the University if Illinois, Urbana, IL 61801 USA

phone: 217-265-6841; fax: 217-244-6869; e-mail: kkarahal@cs.uiuc.edu.

Projects like Linux, Apache and Firefox have catapulted the

social production “movement” into the popular consciousness,

to say nothing of Wikipedia.

Social production operates quite differently than traditional

information projects. Contributors do not meet face to face.

There are few plans and even fewer schedules. Contributors

choose what they work on and how much time they spend

working on it. In almost all cases, they do not get paid for their

work. In open source development, for example, traditional

mechanisms for coordinating work (e.g., schedules, plans,

face-to-face meetings) are absent [6] yet studies show that

open source development needs coordination more than

collocated development [7]. We are just starting to understand

what drives these communities.

Many social production communities represent vibrant

social spaces, as well [8]. User discussion and documented

conflict resolution have steadily grown on Wikipedia [9]. In

open source communities, developers have heated emailed

exchanges about feature additions and current legal issues

concerning software licensing. Furthermore, the organizational

structures that these communities adopt impact their sociality

and contributors’ motivations [10].

Considering the motivations of contributors to social

production projects, Benkler writes,

For all of us, there comes a time . . . when we choose to act in

some way that is oriented toward fulfilling our social and

psychological needs, not our market-exchangeable needs. It is

that part of our lives and our motivational structure that social

production taps, and on which it thrives. There is nothing

mysterious about this. It is evident to any of us who rush home

to our family or to a restaurant or bar with friends at the end of

a workday . . . When can all these acts, distinct from our desire

for money and motivated by social and psychological needs,

be mobilized, directed, and made effective . . .? ([2], p. 98—99)

In this article, we argue that social visualization can help

answer Benkler’s question. Theorists and experimenters have

found that social production projects rely on the intrinsic

motivations of contributors, what Benkler describes as our

“social and psychological needs,” as opposed to external

motivations, like money [10]-[12]. Moreover, researchers have

found that positive verbal feedback can increase intrinsic

motivation [12]. We present evidence here that feedback in

the form of social visualization also positively impacts

contributors’ motivations, in addition to providing a space for

social reflection.

Using Social Visualization to Motivate
Social Production

Eric Gilbert, Member, IEEE and Karrie Karahalios, Member, IEEE

 2

As primary evidence for our claim, we present CodeSaw, a

social visualization of open source software development that

we studied with real open source communities [13]. Almost all

social production communities record the community’s

actions and interactions; however, most leave the archives

untapped. The sheer size of the archives may play a significant

role. A typical open source project can generate over 20,000

code checkins, and a project mailing list may hold years of

conversations, comprising thousands of individual email

messages. While a long history of group dynamics lives in

these archives, the current state of technology leaves it buried.

CodeSaw mines open source archives, combining code

repository information with project communication to

visualize a software community from two independent

perspectives (Figure 1). By bringing together both shared

artifacts (code) and the talk surrounding those artifacts

(project mail), CodeSaw reveals group dynamics that currently

lie dormant in text archives. CodeSaw bundles novel

interaction techniques with visualization best practices to

provide a space for reflection for dispersed online

communities.

For the foundation of social production communities, the

open source developers, the Wikipedia authors, etc., social

visualization offers a chance to reflect on their community and

their achievements. Especially because most do not get paid

for their work, seeing their contributions in a community

context can be powerful. For example, when asked about how

CodeSaw made him feel about his contributions to a project,

one user study participant told us that it made him feel

“vindicated.” CodeSaw was designed from the start to support

and reflect community. It serves to support awareness for the

widely-distributed and loosely-knit teams found in social

production communities.

Many projects have visualized online communities,

including social production communities [14]-[24]. To date,

however, most have taken the approach that the visualization

is intended for outsiders (e.g., researchers) to gain insight into

a community’s behavior and structure. CodeSaw has a

different goal: we argue that integrating social visualization

back into actual communities can make a significant impact on

the communities themselves. As far as we know, ours is the

first work to examine the impact of social visualization on the

motivations of contributors to real social production projects.

In social production communities, contributors build and

closely guard their reputations [25]. Social visualization can

help contributors show off their reputations, increase their

motivation and reward them for their contributions. This

argument, the CodeSaw visualization itself and our focus on

Fig. 1. CodeSaw, a social visualization of open source communities, visualizing the open source project Gaim in 2004 (Gaim, 2007). Small

timelines denote developers, with time progressing from left to right. The top of each axis represents code contributions; the bottom represents
project communication. The user has compared two developers by dragging their timelines into the investigation area at the top. By hovering, the
user sees the top 5 files changed by a developer.

 3

our theoretical foundations, form the main contributions of

this article.

II. BACKGROUND

We begin by focusing on related work in distributed

software development, CodeSaw’s target audience. We then

review related work in both software visualization and social

visualization. Finally, we explain how our approach builds on

and extends previous research in social visualization.

A. Distributed and Open Source Software Development

Gutwin, et al. interviewed open source developers to learn

more about the mechanisms that underlie their collaboration

[26]. In their study, they found that open source developers do

maintain awareness of one another, and that text-based

communication (e.g., mailing lists and chat systems) is the

primary vehicle for maintaining it. Along the same lines,

LaToza's study claims that developers devote 40% of their

time to communicating about code [27]. Kraut and Streeter

stressed the uncertainty, interdependence and informal

communication of software development [28]. Noting the

distinct problems of scale inherent in large software systems,

they point out that “many software systems . . . are very large

and far beyond the ability of any individual or small group to

create or even understand in detail.”

Nakakoji, et al. looked at the evolution of open source

projects, providing a taxonomy of open source developers:

Passive User, Reader, Bug Reporter, Bug Fixer, Peripheral

Developer, Active Developer, Core Member and Project

Leader [29]. Yamauchi notes that properties of “lean media”

enable open source developers to piece together simple

communication tools to get their work done [30]. In the

context of maintaining large software systems, Singer found

that code repositories (e.g., CVS) are important sources of

information for programmers [31].

Researchers have also looked at open source communities

from an organizational perspective. Mockus, et al. studied two

well-known and successful open source projects, Apache and

Mozilla [6].They examined the assignment of roles in each

community, finding that a core group of about 10 to 15

developers used mailing lists to coordinate and assign work.

Osterloh and Deci found that organizational forms and

different types of feedback significantly impact intrinsic

motivation, a critical element in social production

communities [10],[12]. In brief, they found that external

motivations “crowd out” intrinsic motivations—for example,

paying your friends to watch over your house while you go on

vacation can actually decrease their motivation to help you.

B. Visualization of Software and Software Development

A number of projects have visualized software projects

[32]-[36],[16],[17]. SeeSys takes an overall project approach,

using a treemap visualization of a source code file system

[32]. SeeSys works particularly well for very large projects

that are also relatively stable. Seesoft approaches the problem

on a line-by-line basis, mapping every line of a file to a

column [35]. Columns are colored based on attributes such as

recency of change, the developer that made the change, etc.

Biehl’s FASTDash aggregates individual code files into a

treemap and attaches meaningful contextual information to

support co-located programming [33]. Ducheneaut looked at

online software development, but from a network prospective

[17],[34]. Ducheneaut’s work examines the social and material

networks that form in online software collaboration.

Other work adopts a line-oriented style. Augur presents one

user with an integrated visual-diff display of CVS records

[16]. Augur, as in [17],[34], also gives users a social network

view of the code and a temporal view. The temporal view is of

particular interest to CodeSaw’s design process. While Augur

shows a line-oriented temporal history, CodeSaw abstracts

that information. CodeSaw shows one year in the life of a

project, and is not tied to any one file. CodeSaw also differs

from Augur by adding spatial messaging and email

communication as social features to its visualization. We

designed CodeSaw as a community mirror, a visualization for

an entire group.

C. Social Visualization

Social visualization is visualization about people, for people

[37]. The first social visualizations [14],[18], organized

themselves around two basic principles, and most successive

work has followed suit: (1) group membership is fundamental

to social practice [38], and (2) behavior patterns often emerge

from groups that individuals cannot themselves describe [39].

Later work in social visualization [9],[40], on the other hand,

has worked on distributing visual analysis across many people,

which seems to yield better overall results [41]. Some social

visualization designers have designed spectator experiences

into their visualizations to support social data analysis

[42],[43]. On the whole, effective social visualizations, like

effective social systems generally, tend to respect the

principles of visibility, awareness and accountability, known

as social translucence [44].

A number of projects have looked at the behavioral patterns

that communities demonstrate [9],[14],[15],[18],[20],[22],

[23],[43],[45],[46]. History Flow [46] and [23] visualize

Wikipedia and Usenet postings, respectively. History Flow

focuses on the interaction of collaborators on one Wikipedia

entry. Authorlines deals with one user's posts to Usenet. Also

looking at Usenet, Smith and Fiore built a treemap

visualization of Usenet’s hierarchy which allowed them to

analyze posting patterns in different parts of the community.

Nardi constructed a social network visualization of contacts.

And Wattenberg accidently created a minor Internet fad with a

visualization of the popularity of baby names over time [45].

We build on and extend the research presented here. We

note that the work summarized above focuses on learning

about a community or data set from the outside (usually

researchers learning about a community of interest). Two

notable exceptions to this rule, both by Fernanda Viégas,

support our argument that social visualization can motivate

social production: PostHistory and Themail [22],[21]. Both

projects visualized personal email archives and found that

 4

users had strong personal reactions to the visualizations. Users

told stories that the visualizations prompted in their minds;

they sent screenshots to family and friends. In short, the

visualizations compelled them to interact. We believe social

visualization not only holds the power to spur social

interaction in the way observed by Viégas, but also to

motivate contributions to important social production projects,

like Wikipedia and open source development.

III. CODESAW: A SOCIAL VISUALIZATION OF OPEN SOURCE

SOFTWARE DEVELOPMENT

CodeSaw evolved from a prototype to its current form over

the course of four major iterations. We next discuss the four

major design implications from our formative evaluations that

guided the final design of CodeSaw.

A. Design Implication: Focus on people

Users of the prototype started by asking simple social

questions. “When was I most active?” “Who writes more code

than me?” “Who was sending email then?” From the start it

was evident that the prototype had difficulty answering these

simple questions. We noticed that users of the visualization

asked questions that revolved around people: themselves and

the others working in the periphery. Therefore, CodeSaw

focuses first and foremost on the people in the community.

B. Design Implication: Design for social data analysis

During formative evaluations, users would often call over

other people to look at their discoveries. In one instance, a

user noted that a particular developer only contributed code

during the summer, wondering “if this developer might be a

student.” In another instance, a user commented that with the

exception of one developer, no one had contributed to a

particular project during the last week of December. Talking

about the one developer that contributed, the user said, “the

holidays must not have been good, since this guy worked so

much.” The developer contributed only code during this

period; the mailing list was silent, implying that the developer

worked alone. We feel that our focus on people directly lead

to the social data analysis we observed.

C. Design Implication: Allow users to explore context

While early CodeSaw iterations achieved a simplicity that

users liked, some felt that it hid too much information. They

asked for a way to uncover some of the information that

CodeSaw aggregated or discarded. For example, a number of

designers wanted to know on what files the developers were

working, or what phrases the developers were most commonly

writing in emails at the time of a release.

D. Design Implication: Only visualize essential information

The CodeSaw prototype used a large portion of the

available information in the visualization: number of lines

added, number of lines subtracted, recency of changes, etc.

Initially, we hypothesized that code developers would want

such a high level of detail. However, users told us that it

exposed too much information. If they wanted such high

levels of detail, users could more easily go back to the CVS

archives and the code itself. Only the information items

indicated as very useful by users made their way into

CodeSaw.

CodeSaw presents an easily graspable concept of

“contribution:” raw number of code lines added or email

words written. Although this choice throws away some

important information about a developer's actions, most

designers and developers considered it a fairly accurate

representation of work.

This simplified representation is very powerful. Most

existing tools focus on only one archive. CodeSaw, on the

other hand, incorporates two archives, visualizing the

community from two important and separate perspectives.

CodeSaw intuitively made sense to users, since it did not

incorporate complex measurements that were hard to

understand quickly. Unlike our experience with early

Fig. 2. The entire life of a numerical analysis open source project. Developers in this project have visual signatures: the green developer, for

example, codes in periodic bursts separated by month-long silences. The project generated a significant amount of activity in its first few months,
but interest wanes considerably towards the end.

 5

iterations, many people said that they would not need to go

back to CVS to see the things that CodeSaw told them.

E. Design Implications for reflective social visualiztions

We feel it is important to note that CodeSaw explicitly aims

to reflect a community for that community, not for an external

researcher. For example, a researcher might be interested who

brokers power in various types of open source projects, who

sets the agenda or who enforces norms. A social network

visualization of various projects might serve this goal.

CodeSaw is different. It seeks to reflect the community in a

way that members of that community care about. All of the

design implications stem from this fundamental goal.

For this reason, CodeSaw eliminates unnecessary

Fig. 3. A closer look at two core developers in Gaim. Until May, marv_sf writes almost no code (a). Then, following a surge in mail

by both developers (b), marv_sf makes a big code contribution (c). However, his coding is short-lived (d). thekingant and marv_sf
write mail at about the same time (e), and they take a break during the same week (f). What is their relationship?

 6

complications like complex models of performance. Some

would argue that this represents a step in the wrong direction.

For years, the software engineering literature has established

heaps of benchmarks to evaluate code. However, we take a

distinctly different point of view. The coders know what their

code means; CodeSaw does not need to interpret it for them. It

allows users to explore instead of summarizing. When

designing future reflective interfaces for social production, we

argue that simpler is usually better—let the members of the

community make the interpretations. But also provide a space

in which they can do it.

IV. USING CODESAW TO FIND TRENDS AND ROLES

As a demonstration of CodeSaw’s capabilities, we turn now

to using the visualization to find trends and roles in a real open

source community. CodeSaw can illuminate the trends of a

project, as well as the roles that individuals assume in

collaboration. In the example that follows we applied

CodeSaw to the popular open source project Gaim1 [47].

Figure 1 shows Gaim broadly, looking at all core developers

over the year 2004. Figure 3, on the other hand, shows a

detailed view of two developers. Both views give us insight

into the community.

A glance at Figure 1 tells us that Gaim was very active in

2004. A closer look, however, shows us that one or two people

do the majority of the work. We have seen this trend in all 20

open source projects we have analyzed with CodeSaw. A

handful of leaders emerge who keep the project moving.

Looking at the two major contributors, Figure 3 offers

insights into their behavior patterns. Until May, marv_sf wrote

only mail (a). In the last few weeks of April, marv_sf and

thekingant write a large amount of mail corresponding to a

project release (b). CodeSaw denotes a project release by a

thin gray line. Almost directly after April's mail surge,

marv_sf starts coding for the first time, backed up by

thekingant (c). marv_sf makes significant contributions to

Gaim during these couple of months. Did thekingant convince

marv_sf to code for Gaim?

By July, marv_sf has stopped coding for the most part. He

contributes almost no code for the rest of the year, in fact (d).

We can also see that thekingant and marv_sf tend to peak in

project mail at the same times, usually connected to a release

(e). In the first week of October, right before a release, both

developers go silent--no code or mail (f). The project did not

go down because other people contributed. Did both

developers happen to take a break at the same time? Do they

know each other personally?

Viewing CodeSaw from the outside, we can try to project a

story onto the visualization. Did the surge in production by the

thekingant inspire marv_sf? Did marv_sf finish a hard

semester at school and suddenly find a lot of time on his

hands? However, CodeSaw is primarily designed as a

community mirror. From the outside we can learn important

things about a project, but we do not get the critical context

1 Gaim has now changed its name to Pidjin (http://www.pidgin.im/).

that only the community itself can provide. In this respect, we

feel that CodeSaw achieves a good balance between revealing

private information to the world and leaving enough of it

ambiguous so as to not invade privacy.

V. CODESAW’S ONLINE FIELD STUDY

We distributed CodeSaw via the web to open source

developers around the world. We wanted developers to

integrate CodeSaw into their regular routines and projects,

which we could not accomplish in the lab. We recruited by

targeting project mailing lists and lead developers of open

source projects. The projects were all hosted on

SourceForge.net. In total, nearly 500 recruitment messages

were sent over the course of one month. Subjects received a

$20 gift certificate to an online retailer for their participation

in the study.

Our approach allowed developers to see their own project

history visualized. After interacting with CodeSaw from

somewhere between 30 minutes to one hour, participants

completed an online survey. We asked users to complete the

survey no more than one hour after they finished using

CodeSaw. Participants were free to continue using CodeSaw

after completing the survey.

Because we wanted to do an in situ study, and the

participants were scattered across the world, we could not do

interviews. So we replaced interviews with the best thing we

could: an in-depth online survey. The survey asked

participants about their satisfaction and enjoyment with

CodeSaw. In addition, the survey asked participants about the

effectiveness of CodeSaw in visualizing their community.

Participants and their Projects

Nine participants took part in the evaluation of CodeSaw.

Two were female and seven were male. The subjects ranged in

age from 19 to 61. Five came from open source projects; four

belonged to the same project at a research laboratory. The four

from the research laboratory spent about half of their time in

the same office and about half at a distance. They used email

on the project mailing list to coordinate work. The research

project had been ongoing for three years at the time of the

study. In terms of code, the project consisted of 801 source

code files.

Each of the five open source participants worked on a

distinct project. Each project was among the top 200 most

active projects hosted on SourceForge.net [48]. The duration

of the projects ranged from one to four years. In terms of code,

the projects ranged from 376 source files to 1785 source files,

with a mean of 980. We chose these projects because they are

representative of open source projects generally. Each

participant had developed software for more than three years.

Six of the nine participants had used CVS for more than three

years; the other three participants had used it for between one

and three years.

 We would like to point out that open source developers are

extremely busy people—people who already volunteer

substantial time to their projects. They are quite difficult to

 7

recruit. While more participants would have yielded more, and

potentially richer data, we argue that the authenticity of these

users more than makes up for the number of participants.

VI. RESULTS

Overall, participants enjoyed using CodeSaw to investigate

their project's history. When asked, using a 5-point Likert

scale, how easy CodeSaw was to use, participants responded,

on average 1.6 (1 being the most and 5 being the least). Not

including watching a one minute introductory video, 8 of 9

participants said that it took them 10 minutes or less to get

comfortable with CodeSaw, validating our design goal of a

visualization that novices can access quickly. When asked

how often they would use CodeSaw if it were deployed into

their community, 7 of 9 said they would use it on a monthly

basis or at release time. Since many projects go through 5 to

20 releases a year, we feel that this result is positive.

Furthermore, two developers continued to use CodeSaw for

one month after the study. We discovered this when we shut

down the databases that supported their projects. However, we

do not have any concrete data to present as to their

motivations for their continued use.

A. Group Dynamics

Many of the participants reported seeing confirming and

surprising aspects of their community in CodeSaw:

“It was interesting to see the contributions over time in an

easy graphical interface. I am not sure it was surprising, rather

confirming.”

 “It gave me a better idea about what the overall community

is doing.”

“I found some surprises - some developers were not

attributed as working on the code I *thought* they were

working on in a given period. Others were not contributing

much code during periods when I thought they should have

been.”

Other participants noted that CodeSaw exposed roles in the

community:

“It confirmed my long-held suspicions about the community.

It was easy to see who was doing the development and who

was doing the commentary. Often they were not the same

people.”

“It accurately reflected the fact that I was a project

manager/PI, not a coder.”

“It was interesting. At first I felt as though I had not

contributed much, but then I realized that I had a 'surrogate'. I

was working closely with another developer who committed the

changes to the code base.”

Two participants that worked on projects with less than 5

developers commented on the loneliness that CodeSaw

engendered:

“I feel a bit lonely. It doesn't reflect the community in a

whole. There's a lot of people passing by in the forums. People

sending bug reports and patches are not taken into account.”

“Viewing/visualizing the [anonymous] traffic on the forums

and the lists would be great.”

The participant behind the first comment above said, “I

don't feel like using it again. As I'm almost the only

contributor, it doesn't make much sense.” The Spatial

Messaging section specifically addresses these feelings of

loneliness.

B. Impact on Motivation

Participants remarked on the incentives CodeSaw provides

to developers:

Fig. 4. Three developers’ contributions in context. The progression of

images shows the iterative addition of each developer in the CodeSaw
interface. By adding the yellow developer in (b), the mail contributions
from (a) nearly disappear. By adding the blue developer in (c), the mail

contributions of both yellow and red shrink further, while red’s code
contributions now have more context.

 8

“I'd love to have it in the 'activity page' of the project to show

the 'pulse'. It might be interesting as an immediate reward for

developers. CodeSaw might show the 'most active people' in

the community very easily, and it could show the history of the

project (some project leaders might want to erase some parts

of it though). :-)”

“It made me appreciative of who was doing the work.”

“I might put things in CVS more often and write more email.”

“For example, if one looks at <username> in 2005, he did no

development work that year. If the project were waiting for him

to do something and a milestone was not met, we could get

after him.”

“I might be more sure to commit some of the changes that I

collaborate with other developers on.”

“CodeSaw made me feel good about my contributions to the

project.”

When asked how CodeSaw made him feel about his

contributions to his project, one participant simply responded,

“Vindicated. :-)” We studied CodeSaw with nine open source

developers, and seven said something about CodeSaw

reinforcing their contributions or the contributions of others.

We feel that this result says something powerful, and is one of

the most important outcomes of this study.

C. Spatial Messaging: Comments in the Visualization Itself

In the field study, we learned that CodeSaw helped users

better understand their communities and provided incentives

for developers. However, we also learned that CodeSaw

created feelings of loneliness in communities with only a few

developers. As a response to this lesson, we added spatial

messaging to CodeSaw. Spatial messaging allows users to

leave comments on the visualization itself. These comments

are linked to visualization state (i.e., the configuration of

timelines in the detail graph). When a user brings the

visualization back into the state where the comment was

made, the comment appears. We do not intend to replace

traditional communication channels (e.g., the project mailing

list) with spatial messaging. Developers do not need yet

another communication medium to monitor. In fact, we

explicitly designed spatial messaging to supplement existing

communication channels. A spatial message automatically

generates mail to the mailing list. The message includes a link

that brings the visualization into the right state. Using spatial

messaging, developers and users can reflect on their shared

history in the same place where they see it.

VII. SOCIAL VISUALIZATION’S IMPACT ON SOCIAL

PRODUCTION COMMUNITIES

The results of our study demonstrate that social

visualization can expose group dynamics and motivate

developers in open source communities. We expected the

group dynamics result, but the impact on motivation surprised

us. We intended to make a social visualization that provided a

place for reflection in an online social space. A large

proportion of our study participants, however, told us that

CodeSaw would impact their motivations for contributing to

their projects. We feel that this is a major result from our study

and provides a direction for future work in the area.

We believe that our conclusions extend beyond the open

source communities we studied to social production projects

more generally. For example, imagine a social visualization of

Wikipedia intended for its community members. Any small

impact on motivation and, potentially, on long-term

productive capacity, would be amplified by the sheer size and

importance of Wikipedia. The Linux kernel is another

potential site for major, measurable impact. Wikipedia’s

success will undoubtedly inspire other important and

successful social production projects. Social visualization, it

seems, can provide a space for social reflection, increase

contributors’ motivation, and, potentially, increase actual

output. The key elements are the presentation of long-term

contributions and making its depiction visible to the entire

community.

Social visualization can impact social production only if it

leaves the lab and makes it to the communities actually

visualized. As far as we know, ours is the first work to

examine the impact of social visualization on the motivations

of contributors to real social production projects. We

encourage the research community to observe the long-term

impacts on motivation and production in real, working social

production communities. The potential for impact on a large

scale is huge.

Further work also should address the needs of different

types of social production communities. For example, do

Wikipedia contributors need different interaction and

visualization techniques to represent their communities? We

can provide guidance, but not definitive answers here. Our

results indicate that visualizing both the product of the

community (e.g., code) along with social dynamics (e.g.

mailing lists) proves very useful. It captures the community in

a way that no single metric could. For instance, a social

visualization of Wikipedia aimed at motivation might target

both articles and the talk pages for those articles.

VIII. CONCLUSION

We see the potential for social visualization to make large

impacts on social production projects. As evidence for our

claim, we presented CodeSaw, a social visualization of open

source development that we studied with real open source

developers. CodeSaw visualizes a software community from

two unique perspectives: code repositories and project

communication. After using CodeSaw on their own projects,

developers noted that the visualization held the potential to

motivate them and their fellow contributors. Our results with

CodeSaw point to social visualization’s potential for impact

on other social production projects. Social production projects

have found a new and important place in the modern

 9

networked information economy; the potential for impact is

immense.

ACKNOWLEDGMENTS

We thank the very busy developers in our study for

donating their time to us. We also thank our group for their

helpful feedback during the design process.

REFERENCES

[1] E. Moglen. Anarchism Triumphant: Free Software and the Death of
Copyright. First Monday, 4(8), 1999.

[2] Y. Benkler. The Wealth of Networks: How Social Production

Transforms Markets and Freedom. Yale University Press. 2006.
[3] NASA. Clickworkers results. http://clickworkers.arc.nasa.gov/results.

Retrieved May 15, 2007.
[4] E. Orgell. More Than 1.1 Million Developers In North America Now

Working On Open Source Projects. 2004.

http://evansdata.com/n2/pr/releases/DPS2004.shtml. Retrieved May 16,
2007.

[5] BBC News. (2005, June 2, 2005). Brazil adopts open-source software.

http://news.bbc.co.uk/1/hi/business/4602325.stm.
[6] A. Mockus, R. T. Fielding, & J. D. Herbsleb. Two case studies of open

source software development: Apache and Mozilla. ACM Trans. Softw.

Eng. Methodol., 11(3), 309-346, 2002.
[7] J. D. Herbsleb, & R. E. Grinter, R. E. Splitting the organization and

integrating the code: Conway's Law revisited. Paper presented at the

21st Annual Conference on Software Engineering (ICSE 99). 1999.
[8] SourceForge.net. http://sourceforge.net. Retrieved May 16, 2007.
[9] F. Viégas & M. Wattenberg, M. Many Eyes: A Site for Visualization at

Internet Scale. InfoVis2007. Proceedings of the 2007 IEEE Symposium

on Information Visualization. 2007.
[10] M. Osterloh, & B. S. Frey. Motivation, Knowledge Transfer, and

Organizational Forms. Organization Science, 11(5), 538-550, 2000.
[11] Y. Benkler. Coase's Penguin,or Linux and the Nature of the Firm. Yale

Law Journal, 112, 2002.

[12] E. L. Deci, R. Koestner, & R. M. Ryan. A Meta-Analytic Review of
Experiments Examining the Effects of Extrinsic Rewards on Intrinsic
Motivation. Psychological Bulletin, 125(6), 627-668, 1999.

[13] E. Gilbert, & K. Karahalios. CodeSaw: A Social Visualization of
Distributed Software Development. Paper presented at INTERACT 2007,
2007.

[14] J. S. Donath. Visual Who: animating the affinities and activities of an
electronic community. Paper presented at the third ACM international

conference on Multimedia. 1995.

[15] D. Fisher & P. Dourish. Social and temporal structures in everyday
collaboration. Paper presented at the SIGCHI conference on Human

factors in computing systems. 2004.

[16] J. Froehlich & P. Dourish. Unifying Artifacts and Activities in a Visual
Tool for Distributed Software Development Teams. Paper presented at
the 26th International Conference on Software Engineering. 2004.

[17] Y. E. Medynskiy, N. Ducheneaut, & A. Farahat. Using hybrid networks
for the analysis of online software development communities. Paper
presented at the SIGCHI conference on Human Factors in computing

systems. 2006.
[18] W. Sack, W. Discourse Diagrams: Interface Design for Very Large-

Scale Conversations. Paper presented at the 33rd Hawaii International

Conference on System Sciences-Volume 3, 2000.
[19] M. Smith, M. Invisible Crowds in Cyberspace: Measuring and Mapping

the Social Structure of USENET. In Communities in Cyberspace,

Routledge Press. 1999.
[20] M. A. Smith & A. T. Fiore. Visualization components for persistent

conversations. Paper presented at the SIGCHI conference on Human

factors in computing systems. 2001.
[21] F. B. Viégas, S. Golder, & J. Donath. Visualizing email content:

portraying relationships from conversational histories. Paper presented
at the SIGCHI conference on Human Factors in computing systems.

2006.
[22] F. B. Viégas, D. H. Nguyen, J. Potter, D. Boyd, & J. S. Donath. Digital

artifacts for remembering and storytelling: PostHistory and social

network fragments. Paper presented at Hawaii International Conference

on System Sciences 2004.

[23] F. B. Viégas, & M. Smith. Newsgroup crowds and authorlines:
Visualizing the activity of individuals in conversational cyberspaces.
Paper presented at Hawaii International Conference on System Sciences

2004.
[24] F. B. Viégas, M. Wattenberg, J. Kriss, & F. van Ham. Talk Before You

Type: Coordination in Wikipedia. Paper presented at Hawaii

International Conference on System Sciences 2007.
[25] C. M. Kelty. Free Software/Free Science. First Monday, 6(12). 2001.
[26] C. Gutwin, R. Penner, & K. Schneider. Group awareness in distributed

software development. Paper presented at the 2004 ACM conference on

Computer supported cooperative work. 2004.
[27] T. D. LaToza, G. Venolia, & R. DeLine. Maintaining mental models: a

study of developer work habits. Paper presented at the 28th international

conference on Software engineering. 2006.
[28] R. E. Kraut & L. A. Streeter. Coordination in software development.

Commun. ACM, 38(3), 69-81, 1995.
[29] K. Nakakoji, Y. Yamamoto, Y. Nishinaka, K. Kishida, & Y. Ye.

Evolution patterns of open-source software systems and communities.

Paper presented at the International Workshop on Principles of Software
Evolution. 2002.

[30] Y. Yamauchi, Y, M. Yokozawa, T. Shinohara, & T. Ishida.

Collaboration with Lean Media: how open-source software succeeds.
Paper presented at the 2000 ACM conference on Computer Supported

Cooperative Work. 2000.

[31] J. Singer. Practices of Software Maintenance. Paper presented at the
International Conference on Software Maintenance. 1998.

[32] M. J. Baker & S. G. Eick. Space Filling Software Visualization. Paper

presented at the Journal of Visual Languages and Computing. 1995.
[33] J. T. Biehl, M. Czerwinski, G. Smith, & G. G. Robertson, G. G.

FASTDash: a visual dashboard for fostering awareness in software

teams. Paper presented at the SIGCHI conference on Human factors in

computing systems. 2007.
[34] N. Ducheneaut. Socialization in an Open Source Software Community:

A Socio-Technical Analysis. Comput. Supported Coop. Work, 14(4),
323-368. 2005.

[35] S. G. Eick, J. Steffen, & E. Sumner. Seesoft: A Tool for Visualizing

Line-Oriented Software Statistics. Paper presented at the IEEE

Transactions on Software Engineering. 1992.
[36] B. Kerr, L. T. Cheng, & T. Sweeney. Growing bloom: design of a

visualization of project evolution. Paper presented at the CHI '06

extended abstracts on Human factors in computing systems. 2006.
[37] K. Karahalios and F. Viégas. Social Visualization: Exploring Text,

Audio, and Video Interaction. Extended Proceedings of ACM Computer-

Human Interaction, 2006.
[38] G. Simmel, G. On Individuality and Social Forms. Chicago: The

University of Chicago Press. 1971.
[39] W. Whyte. City: Rediscovering the Center. New York: Doubleday.

1988.

[40] J. Heer, F. B. Viégas, & M. Wattenberg. Voyagers and voyeurs:
supporting asynchronous collaborative information visualization. Paper
presented at the SIGCHI conference on Human factors in computing

systems. 2007.

[41] P. J. Ludford, D. Cosley, D. Frankowski, & L. Terveen. Think different:
increasing online community participation using uniqueness and group
dissimilarity. Paper presented at the SIGCHI conference on Human

factors in computing systems. 2004.
[42] S. Reeves, S. Benford, C. O'Malley, & M. Fraser. Designing the

spectator experience. Paper presented at the SIGCHI conference on

Human factors in computing systems. 2005.
[43] M. Wattenberg. Baby names, visualization, and social data analysis.

Paper presented at the Information Visualization, 2005. INFO VIS 05.

Proceedings of the 2005 IEEE Symposium on Information Visualization.
[44] T. Erickson & W. A. Kellogg. Social translucence: an approach to

designing systems that support social processes. ACM Trans. Comput.-

Hum. Interact., 7(1), 59-83, 2000.
[45] B. A. Nardi, S. Whittaker, E. Isaas, M. Creech, J. Johnson, & J.

Hainsworth. ContactMap: Integrating Communication and Information

Through Visualizing Personal Social Networks. Communications of the

ACM, 2001.
[46] F. B. Viégas, M. Wattenberg, & K. Dave. Studying cooperation and

conflict between authors with history flow visualizations. Paper
presented at the SIGCHI conference on Human factors in computing

systems. 2004.

 10

[47] Gaim. http://gaim.sourceforge.net. Retrieved May 16, 2007.
[48] SourceForge.net. http://sourceforge.net/top/mostactive.php?type=week.

Retrieved May 16, 2007.
[49] E. R. Tufte. The Visual Display of Quantitative Information: Graphics

Press. 1983.

[50] B. B. Bederson & J. D. Hollan. Pad++: a zooming graphical interface for
exploring alternate interface physics. Paper presented at the 7th annual
ACM symposium on User interface software and technology. 1994.

Eric Gilbert (M'08) is a third-year PhD candidate in the Department of
Computer Science at the University of Illinois at Urbana-Champaign. He

obtained his B.S. in mathand computer science from University of Illinois at
Urbana-Champaignin 2001.

He is currently a member of Prof. Karahalios's Social Spaces group at

UIUC. Before attending graduate school, he taught for two years as part of
Teach For America Chicago, and built an online science community for high
school students as part of Fermi National Accelerator Laboratory. His current

research interests include social media, visualization and the places where the
two intersect.

Mr. Gilbert is also a member of ACM and ACM SIGCHI. He recently won

the Best Paper award at CHI 2008 for his empirical work on rural social media
use.

Karrie Karahalios (M’04) is an assistant professor in the Department of
Computer Science at the University of Illinois at Urbana-Champaign where
she runs the Social Spaces group. She completed a S.B. (1994) in electrical

engineering, an M.Eng. (1995) in electrical engineering and computer science,
and an S.M. (1997) and Ph.D (2004) in media arts and science at the
Massachusetts Institute of Technology.

 Her work focuses on the interaction between people and the social cues
they perceive in networked electronic spaces. Of particular interest are
interfaces for pubic online and physical gathering spaces such as chatrooms,

cafes, parks, etc. The goal is to create interfaces that enable users to perceive
conversational patterns that are present, but not obvious, in traditional
communication interfaces.

 Prof. Karahalios is a member of ACM and a committee member for IEEE
TableTop 2006-2008. She has received the NSF Career Award, IBM Young
Faculty Award, Microsoft Young Faculty Award, and the Microsoft A.

Richard Newton Breakthrough Research Award.

